

CAREER AND TECHNOLOGY EDUCATION
Information Technology

IT.ADV Advanced Placement Computer Science*

Standards Indicators
IT.ADV.10 Demonstrate knowledge of numerical and symbolic computation.

[HCLG>MA{1:EX1.1, 1.2; 2:EX2.2, 2.3 } SC{ 1:EX1.6; also see note below }]
 IT.ADV.10.01 Describe the problems associated with numerical algorithms (i.e.

approximations and accuracy).
 IT.ADV.10.02 Describe the problems associated with the round-off effect.
 IT.ADV.10.03 Evaluate expressions using infix notation, prefix notation, postfix notation

and boolean algebra.
 IT.ADV.10.04 Convert expressions between infix, prefix and postfix notations.
IT.ADV.20 Demonstrate proficiency in programming.
 [HCLG> MA{ 1:EX1.1, 1.2; 2:EX2.2, 2.3; 3:EX3.2 } } SC{ 1:EX1.6; also see note
 below } SFS { 1:EX1.2, 1.3; 2:EX2.1, 2.2, 2.3, 2.4 }]
 IT.ADV.20.01 Write programs using classes.
 IT.ADV.20.02 Write programs or program segments using arrays, structs, and objects.
 IT.ADV.20.03 Write programs or program segments using files.
 IT.ADV.20.04 Write programs or program segments using static representations of stacks

and queues.
 IT.ADV.20.05 Define pointers.
 IT.ADV.20.06 Compare static and dynamic allocation of memory in the representation of

stacks and queues.
 IT.ADV.20.07 Write programs or program segments using dynamic representations of

stacks, queues and linked lists.
 IT.ADV.20.08 Write programs or program segments using tree structures.
 IT.ADV.20.09 Compare recursion with iteration.
 IT.ADV.20.10 Write programs or program segments that implement recursive algorithms.
 IT.ADV.20.11 Write programs or program segments that implement sequential searches,

binary searches and hashing.
IT.ADV.20.12 Write programs or program segments that implement bubble, quick and

heap sorts.
 IT.ADV.20.13 In small groups, illustrate a computer language using syntax diagrams and

Backus-Naur Form.
 IT.ADV.30 Summarize knowledge of algorithms and data structures.
 [HCLG>MA{ 1:EX1.1, 1.2; 2:EX2.2; 3:EX3.1, 3.2 } SC{ 1:EX1.6; also see note
 below }SFS{ 1:EX1.3; 2:EX2.3, 2.4 }]
 IT.ADV.30.01 Perform simple, best, average and worst case analysis of algorithms.
 IT.ADV.30.02 Perform Big-O comparisons.
 IT.ADV.30.03 Define and use arrays, structs, and objects.
 IT.ADV.30.04 Define and use linked lists.
 IT.ADV.30.05 Define and use stacks, queues and trees.
 IT.ADV.30.06 Perform pre-order, in-order and post-order transversals of dynamic data

structures.
 IT.ADV.30.07 Perform insertions and deletions to dynamic data structures.
 IT.ADV.30.08 Describe, use, and compare various sorting and searching algorithms.
 IT.ADV.30.09 Describe and use graphs.
 IT.ADV.30.10 Perform graph transversals.
 IT.ADV.30.11 Develop and use recursive algorithms.

July 2002 1

July 2002 2

IT.ADV.40 Demonstrate knowledge of software methodology and engineering.
 [HCLG>EN{ 1:EX1.1; 3:EX3.1, 3.3 } MA{ 1:EX1.1, 1.2; 2:EX2.2, 2.3; 3:EX3.2 }
 SC{ 1:EX1.6; also see note below } SFS{ 1:EX1.1, 1.3; 2:EX2.1, 2.2, 2.3, 2.4; 3:
 EX3.1, 3.2 }]
 IT.ADV.40.01 Define program architecture, modularity, abstraction, information hiding,

functional independence, procedural design and reusability.
 IT.ADV.40.02 Critically evaluate a program design based on the use of modularity,

abstraction, information hiding, functional independence and procedural
design.

 IT.ADV.40.03 Describe the preconditions, post-conditions and exceptional conditions in
the subprogram specification.

 IT.ADV.40.04 Use desk checking, walk-throughs and inspections for debugging.
 IT.ADV.40.05 In groups, describe and develop integration tests for team projects.
 IT.ADV.40.06 In report form, discuss the concepts of coupling and cohesion and their

influence on program design.
 IT.ADV.40.07 Develop and illustrate test plans including black box and white box tests.

IT.ADV.50 Summarize knowledge of computer architecture. [HCLG>SFS{ 2:EX2.3, 2.4; 4:EX4.1,
4.2 }]

 IT.ADV.50.01 Explain the use of error-correcting codes
 IT.ADV.50.02 Illustrate the concept of a multilevel machine.
 IT.ADV.50.03 Working in small groups, report on the function of the various parts of the

central processing unit.
 IT.ADV.50.04 Research and illustrate the function of buses, multiplexers, decoders,

arithmetic logic units, shifters, etc. at the conceptual level.
 IT.ADV .50.05 Research and report on the various types of processors.
 IT.ADV.50.06 In report form, define the virtual machine.
 IT.ADV.50.07 Research the reasoning behind multilevel machines.
 IT.ADV.50.08 Research and illustrate the six levels present in most modern computers.
 IT.ADV.50.09 Research and illustrate the various types of memory.
IT.ADV.60 Summarize knowledge of social, ethical and professional issues.
 [HCLG>EN{ 2:EX2.1, 2.2; 3:EX3.1, 3.3 } SC{ 1.EX1.7 } SFS{ 4:EX4.1, 4.2, 4.3;

5:EX5.1, 5.2, 5.4 }]
 IT.ADV.60.01 Discuss the issues related to network security (virus, worm, hackers, etc.).
 IT.ADV.60.02 Describe major issues surrounding security and encryption of sensitive

data.

* High School Core Learning Goals Key

HCLG High School Core Learning Goal
EN English
MA Mathematics
SC Science
SFS Skills for Success
EX Expectation

Science Note: Programming problems come from many disciplines. Thus, algorithms that solve problems

or simulate phenomena in science are a part of programming classes. This is another way,
AP Computer Science supports the high school core learning goals in science.

